博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
分布式id
阅读量:6035 次
发布时间:2019-06-20

本文共 4837 字,大约阅读时间需要 16 分钟。

hot3.png

    分布式id一般是服务于数据库主键。

1、单点数据库使用数据库

    并不需要分布式id,使用普通的自增id或uuid就可以了。

    优势:

  • 简单,无需程序任何附加操作
  • 保持定长的增量
  • 在单表中能保持唯一性

    劣势:

  • 高并发下性能不佳,主键产生的性能上限是数据库服务器单机的上限。

2、分布式数据库(存在分库分表)

2.1、 UUID

    可以通过java程序(UUID.randomUUID().toString())生成,数据库也可以生成(不建议)。

优势:

  • 本地生成ID,不需要进行远程调用。
  • 全局唯一不重复。
  • 水平扩展能力非常好。

劣势:

  • ID有128 bits,占用的空间较大,需要存成字符串类型,索引效率极低。
  • 生成的ID中没有带Timestamp,无法保证趋势递增。

2.2、(推荐)

    snowflake的结构如下(每部分用-分开):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)。

    一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)

    snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。据说:snowflake每秒能够产生26万个ID。

/** * Twitter_Snowflake
* SnowFlake的结构如下(每部分用-分开):
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - * 000000000000
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 */public class SnowflakeIdWorker { // ==============================Fields=========================================== /** 开始时间截 (2015-01-01) */ private final long twepoch = 1420041600000L; /** 机器id所占的位数 */ private final long workerIdBits = 5L; /** 数据标识id所占的位数 */ private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */ private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */ private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */ private final long sequenceBits = 12L; /** 机器ID向左移12位 */ private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */ private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */ private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */ private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */ private long workerId; /** 数据中心ID(0~31) */ private long datacenterId; /** 毫秒内序列(0~4095) */ private long sequence = 0L; /** 上次生成ID的时间截 */ private long lastTimestamp = -1L; // ==============================Constructors===================================== /** * 构造函数 * @param workerId 工作ID (0~31) * @param datacenterId 数据中心ID (0~31) */ public SnowflakeIdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException( String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException( String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } // ==============================Methods========================================== /** * 获得下一个ID (该方法是线程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 if (timestamp < lastTimestamp) { throw new RuntimeException(String.format( "Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } // 如果是同一时间生成的,则进行毫秒内序列 if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; // 毫秒内序列溢出 if (sequence == 0) { // 阻塞到下一个毫秒,获得新的时间戳 timestamp = tilNextMillis(lastTimestamp); } } // 时间戳改变,毫秒内序列重置 else { sequence = 0L; } // 上次生成ID的时间截 lastTimestamp = timestamp; // 移位并通过或运算拼到一起组成64位的ID return ((timestamp - twepoch) << timestampLeftShift) // | (datacenterId << datacenterIdShift) // | (workerId << workerIdShift) // | sequence; } /** * 阻塞到下一个毫秒,直到获得新的时间戳 * @param lastTimestamp 上次生成ID的时间截 * @return 当前时间戳 */ protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } /** * 返回以毫秒为单位的当前时间 * @return 当前时间(毫秒) */ protected long timeGen() { return System.currentTimeMillis(); } // ==============================Test============================================= /** 测试 */ public static void main(String[] args) { SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0); for (int i = 0; i < 1000; i++) { long id = idWorker.nextId(); // System.out.println(Long.toBinaryString(id)); System.out.println(id); } }}

    

    

转载于:https://my.oschina.net/u/182501/blog/1536904

你可能感兴趣的文章
JAVA多线程深度解析
查看>>
Kafka High Level Consumer 会丢失消息
查看>>
时间轴
查看>>
java 获取系统当前时间的方法
查看>>
Ubuntu 10.04升级git 到1.7.2或更高的可行方法
查看>>
Spring Security4实战与原理分析视频课程( 扩展+自定义)
查看>>
消息队列服务器 memcacheq的搭建
查看>>
VMware Horizon View 7.5 虚拟桌面实施咨询与购买--软件硬件解决方案
查看>>
RabbitMQ如何保证队列里的消息99.99%被消费?
查看>>
第一周博客作业
查看>>
thinkpython2
查看>>
String、StringBuffer和StringBuilder的区别
查看>>
oracle recyclebin与flashback drop
查看>>
svmlight使用说明
查看>>
Swing 和AWT之间的关系
查看>>
Mysql设置自增长主键的初始值
查看>>
Android计时器正确应用方式解析
查看>>
获取post传输参数
查看>>
ASP生成静态页面的方法
查看>>
mysql 权限
查看>>